US009432187B2

a2 United States Patent (10) Patent No.: US 9,432,187 B2
Newman 45) Date of Patent: Aug. 30,2016
(54) DATA SCRAMBLING INITIALIZATION USPC e 375/367
See application file for complete search history.
(71) Applicant: LSI Corporation, San Jose, CA (US) .
(56) References Cited
(72) Inventor: g;;sr)vey J Newman, Scotts Valley, CA U.S. PATENT DOCUMENTS
5,809,093 A 9/1998 Cooper
(73) Assignee: Avago Technologies General IP 6,628,725 Bl 9/2003 Adam et al.
(Singapore) Pte. Ltd., Singapore (SG) 7,274,315 B2 9/2007 Baumer
7,317,735 Bl 1/2008 Ojard
(*) Notice: Subject. to any disclaimer,. the term of this ;:ggi:gg; g} éggig E;yi;ﬁla al.
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 155 days. (Continued)

21) Appl. No.: 14/267,653 FOREIGN PATENT DOCUMENTS

WO 0225869 3/2002

(22) Filed: May 1, 2014
OTHER PUBLICATIONS

(65) Prior Publication Data SAS-4 / SPL-4 Block encoding discussion topics, retrieved from
US 2015/0312037 Al Oct. 29, 2015 http://www.t10.org/cgi-bin/ac.pl?t=d&f=13-232r2.pdf Nov. 2013.
(Continued)
Related U.S. Application Data Primary Examiner — David B. Lugo
(60) Provisional application No. 61/983,736, filed on Apr. (57) ABSTRACT
24, 2014. Systems and methods for improved synchronization
(51) Int. CL between a transmit device and a receive device in a com-
HO4L 7/00 (2006.01) munication system. In one embodiment, an apparatus for
FHO4L 9/08 (2006.01) transmitting bits of data over a link includes a scrambler to
G09C 1/00 (2006.01) scramble data. and circuitry conﬁgured to inse.rt the
FHO4L 906 (2006.01) scrambled data into frames and to transmit the frames in data
HO4L 9/12 (2006.01) blogks over the link. The apparatus also includes an initial-
(52) US.CL ization module configured to generate an unscrambled
CPC oo HO4L 9/0869 (2013.01); Go9C 199 ~ Pseudo-random sequence. The circuitry is further configured

to periodically insert the unscrambled pseudo-random
sequence into a frame, to initialize the scrambler to a starting
point based on the insertion of the unscrambled pseudo-

CPC . GOGF 13/42; GOGF 13/4221; HOAL 9/0869; random sequence into the frame, and to transmit the frame

HO4L, 2209/34; HOAL 9/065; Hodl 9/12, @ data block over the link.
FI04L, 7/0004; TI04L, 7/0091: GO9C 1/00 20 Claims, 8 Drawing Sheets

(2013.01); HO4L 9/065 (2013.01); HO4L 9/12
(2013.01); HO4L 2209/34 (2013.01)
(58) Field of Classification Search

DATA
104

INITIALIZATION
MESSAGE LK
112
INITIALIZATION 130 INITIALIZATION
GENERATOR S % b DETECTION DESCmﬂBLER
110 134

DATA SCRAMBLER
104 106

102 152
TRANSMITTER RECEIVER
DEVICE DEVICE

w/

US 9,432,187 B2
Page 2

(56)

7,738,502
7,747,796
8,032,674
8,261,159
2001/0055311
2007/0239812
2010/0157884

2010/0287402
2011/0149929

2012/0163490
2012/0237036
2013/0185466

References Cited
U.S. PATENT DOCUMENTS

B2 6/2010 Chang et al.
B1 6/2010 Kumar et al.
B2 10/2011 Nguyen et al.
B1 9/2012 Sommer et al.

Al* 12/2001 Trachewsky et al. 370/445

Al 10/2007 Lablans
Al* 6/2010 Haga ...,

Al* 11/2010 Kimetal. ... 713/400
Al* 6/2011 Kleider

Al 6/2012 Whitby-Strevens
Al 9/2012 Dabak et al.
Al 7/2013 Voorhees et al.

OTHER PUBLICATIONS

SPL-4 Packet utilization and primitive encoding, retrieved from
http://www.t10.org/cgi-bin/ac.pl?t=d&{=14-109r1.pdf Apr. 15,
2014.

SPL-4 Summary Proposal, retrieved from http://www.t10.org/cgi-
bin/ac.pl?t=d&f=14-082r0.pdf Mar. 10, 2014.

SAS-4/SPL-4 Modeling, retrieved from http://www.t10.org/cgi-bin/
ac.pl?t=d&f=14-081r0.pdf Mar. 10, 2014.

SPL-4: Block Encoding Observations, retrieved from http://www.
t10.org/cgi-bin/ac.pl?t=d&f=13-285r0.pdf Nov. 5, 2013.

SPL-4: Scrambling Methodology, retrieved from http://www.t10.
org/cgi-bin/ac.pl?t=d&{=13-280r1.pdf Mar. 10, 2014.

SPL-4 G5 block format, retrieved from http://www.t10.org/cgi-bin/
ac.pl?t=d&f=13-268rl .pdf Nov. 1, 2013.

* cited by examiner

US 9,432,187 B2

Sheet 1 of 8

Aug. 30, 2016

U.S. Patent

L OId
\QQN‘
30IA30 30IA30
4INF0Y HLLINSNYHL
Nﬂ“ SJ“
< 9or |, FOT
| wmawwaos | V1Y@
— 7oL _
waosaa | OlLO) C 07 1 mozmhzmo
RERE N ORE NOLLO313d
NOILYZIVILINI 01 XA Nf: NOLLYZITVILINI
AN JOVSSIN
Y NOILYZITYILINI
707
V1vQ

U.S. Patent Aug. 30, 2016 Sheet 2 of 8 US 9,432,187 B2

FIG. 2
200

SCRAMBLE DATAWITH A

SCRAMBLER FOR INSERTION OF
> THE SCRAMBLED DATA INTO 201
FRAMES OF BLOCKS OF DATA

'

GENERATE AN UNSCRAMBLED
PSEUDO-RANDOM SEQUENCE

'

PERIODICALLY INSERT THE
UNSCRAMBLED PSEUDO-RANDOM ~ [~203
SEQUENCE INTO A FRAME

'

INITIALIZE THE SCRAMBLER AT A
STARTING POINT BASED ONTHE ~ [~204
INSERTION

'

TRANSMIT A BLOCK OF DATA THAT
INCLUDES THE UNSCRAMBLED
PSEUDO-RANDOM SEQUENCE

OVER THE LINK

202

~- 2056

U.S. Patent Aug. 30, 2016 Sheet 3 of 8 US 9,432,187 B2

FIG. 3
300~

A 4

Y

RECEIVE DATA OVER A LINK 301

INITIALIZATION YES

MESSAGE? INITIALIZE DESCRAMBLER 304

\

DESCRAMBLE SCRAMBLED DATA |~303

US 9,432,187 B2

Sheet 4 of 8

Aug. 30, 2016

U.S. Patent

[24% it
SIALLINIY Z%_WN@_M@___W_,__Z_
qIANISTY AT
¥ ¥
||
YOl 144
e SINILINI
A A
QIYANI = AL 1 ‘900 V1vd = 901 SIAILINING = 910
A _L A
LT
807 907 707
034 11g-91 NV 116821 Y3av3IH LigC
A A A
0%
o%\« v ‘OId
%0019 9y LA8Z1

US 9,432,187 B2

Sheet 5 of 8

Aug. 30, 2016

U.S. Patent

30IA3d
3LLINSNYYL
009

)

252

» ¥3INNOJ
Y30NVYM Od

4

cer
FTINAOW
FONYNILNIVIA
NI

A

90F
d319WYH0S

A

A

G 9Old
934 VYLYQ Q318NYH0S qol [rr8r)
S $ <
80% 90¥ 4
SIALLNIY JONYNILNIVI
ou._m_\,_&ow// YNIT
f f \
034 ao -zsr [
{ <7 €
80% 90¥ 4
034 | IOVSSIN NOILYZNVILINI | aLo (-08%
$ § § -
80¥ 90¥ P0¥

MNIT

ver
S3AILINNA
QBT CEREN!

A

(772

31NAOW
034

A
A

XN S
Zhi

(713

JOLYY3aNIO
NOILVZITYILINI

JOVSSIN
NOILVZITVILINI

vovy
43avaH

73
v1vd

U.S. Patent Aug. 30, 2016 Sheet 6 of 8 US 9,432,187 B2

FIG. 6 600

o TRANSMIT SYNC YES
MESSAGE?
2
60
SELECT SEED VALUE
(603
GENERATE UNSCRAMBLED
TRANSMIT DATA
DATA OR PSEUDO-RANDOM
PRIMITIVES? SEQUENCE
y (812 PRIMITIVES : 2
INSERT THE UNSCRAMBLED
SCRAMBLE DATA (609 PSEUDO-RANDOM
SEQUENCE INTO FRAME
SCRAMBLE RESERVED
PRIMITIVES
v 613 ! (605
INSERT DATA INTO 610 INITIALIZE THE SCRAMBLER
FRAME Y a
INSERT SCRAMBLED
RESERVED PRIMITIVES
INTO FRAME
v f611
INSERT LINK
MAINTENANCE BITS
INTO THE FRAME
' (606
R PERFORM FORWARD
" ERROR CORRECTION
v [‘ 607
TRANSMIT DATA BLOCK

US 9,432,187 B2

Sheet 7 of 8

Aug. 30, 2016

U.S. Patent

6 'OId

457
FTINAOW JOYNILINIVIN MNIT

8 'Old

ory
31NAOW 934

sll19 @; oV vl

- woJ
oocmﬂw_m_ MW_W_EMLF ﬁ Y00 <«— S30YH3Z LHISNI 5
4300ONd Ho4d
¥ =420 wol 1
aougysI(q Bulwer ﬁ U4 <€—— S3NO Ly3SNI
Slig wmrﬁ vaveo490d921/.83¢5/916./.% 1901 844dv 00
L '9Oid
0Ll
HO1VHANAO NOILVZITVILINI
0
0
S1i9 821 Sla¢ g
- 3
r 00 = INTVA33S
va+€94909¢ 1283€5/916 471901 849v D0 |4dl0 [« dsd1 0
0
3
3

U.S. Patent Aug. 30, 2016 Sheet 8 of 8 US 9,432,187 B2

FIG. 10
COMPUTER
PROCESSOR READABLE
1002 MEDIUM
1006
‘ l
PROGRAM
IO DEVICES « s AND DATA
1004 MEMORY
1008
r’
1010
Y
HOST
SYSTEMS
INTERFACES
1012
COMPUTING SYSTEM 1000

US 9,432,187 B2

1
DATA SCRAMBLING INITIALIZATION

This document claims priority to, and thus the benefit of
an earlier filling date from, U.S. Provisional Application No.
61/983,736 (filed on Apr. 24, 2014) entitled “DATA
SCRAMBLING INITIALIZATION”, which is hereby
incorporated by reference.

FIELD OF THE INVENTION

The invention relates to data scrambling initialization in
linked devices.

BACKGROUND

Several high speed serial communication protocols such
as Serial Attached Small Computer System Interface (SAS),
USB, IEEE 1394, Fibre Channel, etc., use coding schemes
to balance edge transitions and edge density in a stream of
data. For example, several protocols, including SAS, use the
popular 8b10b coding scheme, where 10-bit symbols rep-
resent 8-bit blocks of data and the extra bits in the trans-
mitted 10-bit symbols are selected to balance the average of
ones and zeroes transmitted over the link. This concept,
known as Direct Current (DC) balance, improves bandwidth
characteristics of the signal. The coding scheme also ensures
a sufficient rate of transitions between one and zero on the
line, enabling a receiver circuit to accurately recover bits in
the stream at relatively high transmission rates.

Future updates to the SAS protocol seek to improve
overall throughput. Due to the relatively high 20% overhead
associated with the 8b/10b coding scheme, more efficient
coding schemes that improve efficiency and data throughput
are sought. However, it remains a design challenge to update
communication protocols with new coding schemes while
maintaining backwards compatibility with legacy devices.
Moreover, more efficient coding schemes typically include
longer run lengths that make it difficult to maintain and
sufficient transition density on the transmission line and DC
balance. Current protocols also lack advanced Serializer/
Deserializer (SerDes) features such as continuous adaptation
on the link and full randomization of the bit stream.

SUMMARY

Systems and methods presented herein provide for data
scrambling initialization in a communication system. In one
embodiment, an apparatus for transmitting bits of data over
a link includes a scrambler to scramble data and circuitry
configured to insert the scrambled data into frames and to
transmit the frames in data blocks over the link. The
apparatus also includes an initialization module configured
to generate an unscrambled pseudo-random sequence. The
circuitry is further configured to periodically insert the
unscrambled pseudo-random sequence into a frame, to ini-
tialize the scrambler to a starting point based on the insertion
of the unscrambled pseudo-random sequence into the frame,
and to transmit the frame in a data block over the link.

The various embodiments disclosed herein may be imple-
mented in a variety of ways as a matter of design choice. For
example, the embodiments may take the form of computer
hardware, software, firmware, or combinations thereof.
Other exemplary embodiments are described below.

BRIEF DESCRIPTION OF THE FIGURES

Some embodiments of the present invention are now
described, by way of example only, and with reference to the

10

40

45

50

65

2

accompanying drawings. The same reference number rep-
resents the same element or the same type of element on all
drawings.

FIG. 1 is a block diagram of a communication system in
an exemplary embodiment.

FIG. 2 is a flowchart illustrating a method for preparing
data blocks for transmission with a transmitter device in an
exemplary embodiment.

FIG. 3 is a flowchart illustrating a method for receiving
data blocks with a receiver device in an exemplary embodi-
ment.

FIG. 4 is a block diagram of an exemplary data structure.

FIG. 5 is a block diagram of an exemplary transmitter
device operable to prepare data blocks in accordance with
the exemplary data structure.

FIG. 6 is a flowchart illustrating a method for preparing
data blocks for transmission with a transmitter device in an
exemplary embodiment.

FIGS. 7-9 are block diagrams of exemplary modules of a
transmitter device.

FIG. 10 is a block diagram of an exemplary computing
system in which a computer readable medium provides
instructions for performing methods herein.

DETAILED DESCRIPTION OF THE FIGURES

The figures and the following description illustrate spe-
cific exemplary embodiments of the invention. It will thus be
appreciated that those skilled in the art will be able to devise
various arrangements that, although not explicitly described
or shown herein, embody the principles of the invention and
are included within the scope of the invention. Furthermore,
any examples described herein are intended to aid in under-
standing the principles of the invention and are to be
construed as being without limitation to such specifically
recited examples and conditions. As a result, the invention is
not limited to the specific embodiments or examples
described below.

FIG. 1 is a block diagram of a communication system 100
in an exemplary embodiment. The communication system
100 includes a transmitter device 102 and a receiver device
152, sometimes referred to as nodes, for exchanging data
over a link 130. Examples of nodes include a server or host;
a client or storage device; a hub, switch, or router; all or a
portion of a Storage Area Network (SAN) fabric; etc.
Generally speaking, a node includes a physical coding
sublayer (PCS), sometimes referred to as a phy layer, which
includes components for configuring and detecting units of
data in accordance with a desired communications architec-
ture.

The transmitter device 102 includes phy components that
prepare bits of information for transmission to the receiver
device 152 over the link 130. Data 104 is passed down from
upper layers of a supported architecture in the transmitter
device 102. The scrambler 106 improves signal character-
istics by eliminating repetitive bit patterns in the data 104
that may cause loss of synchronization at the receiver device
152. In one embodiment, the scrambler 106 includes a linear
feedback shift register (LFSR) that generates a cyclical
sequence of pseudo-random bits from a predefined initial
state. The pseudo-random sequence output by the scrambler
106 may be exclusive-OR’d with the data 104 to generate
scrambled data.

The receiver device 152 recovers the data 104 in its
original unscrambled form with a descrambler 160. In one
embodiment, the descrambler 160 includes an LFSR con-
figured with a corresponding cyclical sequence and pre-

US 9,432,187 B2

3

defined initial state with respect to the LFSR of the trans-
mitter device 102. When the scrambler 106 and the
descrambler 160 are initialized properly, the transmitter
device 102 is able to transmit the data 104 with beneficial
signal characteristics and the receiver device 152 is able to
receive the data 104 accurately. With the data 104
unscrambled, it may be passed along to upper layers of a
supported architecture of the receiver device 152.

The transmitter device 102 and the receiver device 152
are enhanced with initialization generator 110 and initial-
ization detection 154, respectively, to generate/detect an
initialization message 112. The initialization message 112 is
a pseudo-random sequence that operates as a frame align-
ment pattern for communication between the transmitter
device 102 and the receiver device 152. The initialization
generator 110 and the initialization detection 154 initialize
the scrambler 106 and descrambler 160, respectively, to
predefined starting points based on transmission of the
initialization message 112 over the link 130 at regular
intervals. The initialization message 112 therefore synchro-
nizes the transmitter device 102 and the receiver device 152
without a retraining window or handshake sequence.

Coordination between the scrambler 106 and the descram-
bler 160 allows full randomization of bits over the link 130
which in turn enables continuous adaptation of the receiver
device 152. Moreover, the pseudo-random nature of the
initialization message 112, when property designed, is dis-
tinguishable from other data patterns which reduces the
chance of synchronization errors at the receiver device 152
and facilitates compatibility with existing communication
architectures. Pseudo-random patterns also have benign
analog characteristics (e.g., transitions, DC balance, spectral
balance) and may be generated/detected with relatively
simple circuitry. Further details and operation of the initial-
ization message 112 will be described in embodiments to
follow.

FIG. 2 is a flowchart illustrating a method 200 for
preparing data blocks for transmission with a transmitter
device in an exemplary embodiment. The steps of method
200 are described with reference to the transmitter device
102 of FIG. 1, but those of ordinary skill in the art will
appreciate that the method 200 may be performed in other
systems. Moreover, steps in each of the flowcharts described
herein are not all inclusive and may include other steps not
shown. The steps of each flowchart described herein may
also be performed in alternative orders. Assume, for the sake
of this embodiment, that the transmitter device 102 is in
communication with a receiver device and bits of informa-
tion are exchanged in accordance with a common data
structure.

In step 201, the scrambler 106 scrambles data 104 for
insertion of scrambled data into frames of data blocks. The
data blocks which include the scrambled data are transmitted
over the link 130 to the receiver device 152. In step 202, the
initialization generator 110 generates an unscrambled
pseudo-random sequence (i.e., initialization message 112).
The transmitter device 102 periodically inserts the
unscrambled pseudo-random sequence into a frame in step
203. In step 204, the transmitter device 102 initializes the
scrambler 106 to a starting point based on the insertion of the
unscrambled pseudo-random sequence. Then, the transmit-
ter device 100 transmits a block of data that includes the
pseudo-random sequence over the link 130 in step 205.
Thus, the transmitter device 102 selects the unscrambled
pseudo-random sequence for insertion/transmission at a
regular interval (e.g., every 100 ps) and selects/inserts/
transmits scrambled data from the scrambler 106 in between

10

15

20

25

30

35

40

45

50

55

60

65

4

the intervals. The method 200 may then repeat the process
with the next frame/block as shown in FIG. 2.

FIG. 3 is a flowchart illustrating a method 300 for
receiving data blocks with a receiver device in an exemplary
embodiment. The steps of the methods herein are described
with reference to the receiver device 152 of FIG. 1, but those
of ordinary skill in the art will appreciate that the methods
may be performed in other systems. Assume, for the sake of
this embodiment, that the receiver device 152 is in commu-
nication with a transmitter device and bits of information are
exchanged in accordance with a common data structure.

In step 301, the receiver device 152 receives data over the
link 130. The receiver device 152 determines whether the
received data is the unscrambled pseudo-random sequence
(i.e., initialization message 112) or whether the received data
is scrambled data in step 302. The initialization detection
module 154 of the receiver device 152 may detect the
unscrambled pseudo-random sequence with an LFSR with a
similar configuration to the LFSR in a transmitter device that
generated the unscrambled pseudo-random sequence. When
the unscrambled pseudo-random sequence is detected, the
method proceeds to step 304, and the receiver device 152
initializes the descrambler 160 to a starting point. Otherwise,
if data received over the link 130 is scrambled, the receiver
device 152 descrambles the scrambled data with the
descrambler 160 in step 303. The method 300 may then
repeat the process with the next frame/block as shown in
FIG. 3.

The synchronized periodic initialization of the scrambler
106 and the descrambler 160 to their respective starting
points allows continuous adaptation over the link 130. In
previous protocols, the nodes resynchronize with retraining
and handshake sequences. The unscrambled pseudo-random
sequence provides good spectral content over the link 130
and is easily generated and detected with simple circuitry.
Moreover, as will be discussed further herein, the
unscrambled pseudo-random sequence may be used to
upgrade nodes to a more efficient coding scheme (e.g.,
128b/130b) while maintaining backward compatibility with
earlier protocols and coding schemes (e.g., 8b/10b).

FIG. 4 is a block diagram of an exemplary data structure
400. In this example, data block 402 includes a 2-bit header
404, a 128-bit frame 406, and a 16-bit forward error cor-
rection (FEC) field 408 for a total of 146 bits in the data
block 402, referred to as a 128b/146b coding scheme. The
header 404 indicates whether the subsequent frame 406 is a
primitive 420 or data 104. Invalid header values (e.g., 00b
and 11b) may be used to detect loss of synchronization.

Primitives (i.e., reserved primitives 424) are used in
legacy Serial Attached Small Computer System Interface
(SAS) devices. The SAS standard provides commands,
transport protocols, and interfaces for physically connecting
and exchanging data between SAS devices. For example, in
SAS, a frame consists of groups of four bytes called dwords,
and a dword may represent data or primitives as defined in
the SAS protocol. Primitives typically begin with a special
10-bit character (e.g., K28.5, K28.3, etc.) and are used for a
variety of signaling and handshaking functions. Data dwords
(i.e., data 104) in SAS carry data, commands, and configu-
ration information.

While the discussion herein refers to primitives and SAS
embodiments, those of ordinary skill in the art will recognize
that the data structure 400 of FIG. 4 is exemplary and
provided for purposes of explanation. Features discussed
herein may be equally applicable in other systems and
protocols, such as Serial Advanced Technology Attachment
(SATA), USB, IEEE 1394, Fibre Channel, and other high

US 9,432,187 B2

5

speed serial applications. As such, embodiments herein may
communicate bits of data via blocks, frames, packets, primi-
tives, or any other data transmission format known in the art.

FIG. 5 is a block diagram of an exemplary transmitter
device 500 operable to prepare data blocks in accordance
with data structure 400. In one embodiment, the phy layer of
the transmitter device 500 is compliant with the SAS Pro-
tocol Layer (SPL). As such, data 104 may include an address
frame, a Serial SCSI Protocol (SSP) frame, a Serial Man-
agement Protocol (SMP) frame, or a Serial ATA Tunneling
Protocol (STP) frame passed down from the link layer of the
transmitter device 500. Reserved primitives 424 may
include legacy SAS 40-bit primitives encoded with an
8b/10b coding scheme in the link layer of the transmitter
device 500.

The data structure 400 allows the transmitter device 500
to define additional primitives not defined in legacy SAS.
One such primitive 420 is initialization message 112 that is
useful for communication synchronization between two
nodes. In this example, the initialization message 112 is 128
bits in length to fit within a single frame 406 of a data block
402 as defined by the data structure 400. While data structure
400 depicts a specific number of bits, those of ordinary skill
will recognize that alternative formats are possible including
other sizes, types, and/or configurations including formats
from any other suitable protocols.

In this embodiment, the transmitter device 500 attaches
16 forward error correction bits to data block 402 with FEC
module 440. The transmitter device 500 also includes DC
wander counter 434 and link maintenance module 432 to
balance the number of ones and zeroes transmitted over the
link 130. Those of ordinary skill in the art will recognize that
components of the transmitter device 500 may be included
as a matter of design choice and that alternative arrangement
and formats are possible. Moreover, the transmitter device
500 may include additional components not shown such as,
for example, a parallel-to-serial converter and/or a differen-
tial encoder. Further details and operation of the transmitter
device 500 with respect to data structure 400 will be
described in embodiments to follow.

FIG. 6 is a flowchart illustrating a method 600 for
preparing blocks of data for transmission with a transmitter
device in an exemplary embodiment. The steps of the
methods herein are described with reference to the trans-
mitter device 500 and data structure 400, but those of
ordinary skill in the art will appreciate that the methods may
be performed in other systems. Steps described herein may
be performed in alternative orders and may include addi-
tional steps not shown. Assume, for the sake of this embodi-
ment, that the transmitter device 500 is in communication
with a receiver device.

In step 601, the transmitter device 500 determines
whether or not to transmit initialization message 112. In that
regard, the transmitter device 500 may include timing cir-
cuitry (not shown) configured to insert/transmit the initial-
ization message 112 at regular intervals in a frame 406 of a
data block 402. In some embodiments, the transmitter device
500 adds a dither to the regular interval for additional
robustness.

When the transmitter device 500 determines to send the
initialization message 112, the method 600 proceeds to step
602 where a seed value is selected for input to the initial-
ization generator 110. To further illustrate, FIG. 7 is a block
diagram of exemplary module of the transmitter device 500.
In this example, the initialization generator 110 includes an
LFSR that retrieves/receives a 7-bit seed value input. The
LFSR is coupled with seven memory cell blocks that col-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

lectively store the first seven bits of an eight bit value. In the
example shown, the memory cells store a seed value of CCh
so that the first seven bits (i.e., 1100110) are input to the
LFSR. The memory cells may be programmed to store
alternative seed values as a matter of design choice.

In step 603, the initialization generator 110 generates an
unscrambled pseudo-random sequence, also referred to
herein as initialization message 112, based on the seed value
input. Referring again to the example in FIG. 7, the LFSR
of'the initialization generator 110 generates the 128-bit value
shown based on the seed value CCh. In some embodiments,
the LFSR is configured to generate leading bits to be used as
a header 404. For example, seed value CCh is programmed
into the input of LFSR which outputs a leading 2-bit value
of 01b followed by the 128-bit value shown based on that
seed value. The 2-bit value 01b appropriately identifies the
initialization message 112 as a primitive 420 (see e.g., FIG.
4), therefore the seed value CCh advantageously generates
a header 404 and a frame 406 with simple circuitry (i.e.,
seven memory cells and an LFSR). In some embodiments,
the last bit (e.g., 1287 bit) in the unscrambled pseudo-
random sequence is cleared to zero in order to maintain DC
balance. Therefore, the initialization generator 110, in some
embodiments, is configured to generate a repeating 127-bit
sequence based on a 7-bit seed value input.

In step 604, the transmitter device 500 inserts the
unscrambled pseudo-random sequence into a frame 406 of a
data block 402. The LFSR of the initialization generator 110
may be configured to generate the initialization message 112
to match or otherwise fit within the length of a single frame
(e.g., frame 406) of a supported architecture (e.g., data
structure 400). In step 605, the scrambler 106 is initialized
to a starting point in response to insertion of the unscrambled
pseudo-random sequence into the frame 406. In step 606, the
transmitter device 500 performs forward error correction on
the block of data 102. The data block 402 is then transmitted
over the link 130 in step 607. Data block 480 of FIG. 5
illustrates an exemplary transmitted data block as a result of
steps 602-607.

The FEC module 440 implements an algorithm to mini-
mize transmission errors. Examples of algorithms used for
FEC include convolutional codes, Hamming codes, Reed-
Solomon codes, and Bose-Chaudhuri-Hocquenghem (BCH)
codes. Here, data structure 400 allows for 16 bits of forward
error correction in each transmitted data block 402. To
further illustrate, the exemplary module of FIG. 8 shows
FEC module 440 that includes a BCH encoder that appends
16 FEC bits to a data block 402 based on content in the
frame 406 (e.g., initialization message 112). In this example,
the FEC module 440 produces value 74h ACh based on the
initialization message 112 generated with seed value CCh.
Therefore, in embodiments with forward error correction, a
seed value may be selected such that the resultant 128-bit
initialization message 112 and 16-bit FEC have a combined
minimal disparity between the total number of ones and the
total number of zeroes to promote DC balance over the link
130. In embodiments without forward error correction, a
seed value may be selected such that the initialization
message 112 itself is DC balanced.

In between the regular intervals, the transmitter device
500 determines not to transmit the initialization message 112
and the method 600 proceeds to step 608. In step 608, the
transmitter device 500 determines whether to transmit data
104 or reserved primitives 424. In this embodiment, since a
frame 406 is 128 bits in length, the transmitter device 500 is
configured to send up to three reserved primitives 424 (each
40-bits in length) in a single frame for a total of 120 bits.

US 9,432,187 B2

7

Therefore, when a sufficient number of primitives (e.g.,
three) are passed down from upper layers of a protocol, the
transmitter device 500 determines to transmit primitives and
the method 600 proceeds to step 609.

In step 609 the scrambler 106 scrambles the reserved
primitives 424. It should be noted that legacy SAS does not
scramble these primitives because legacy SAS uses
unscrambled primitives for rate matching. However, rate
matching is no longer necessary with a regularly transmitted
initialization message 112, and scrambling reserved primi-
tives 424 (in addition to scrambling date 104) advanta-
geously allows for continuous adaptation of linear equalizers
and decision feedback equalizers (DFEs). Thus, the trans-
mitter device 500 enables continuous adaptation over the
link 130 while remaining compatible with legacy control
commands (e.g., reserved primitives 424).

In step 610, the transmitter device 500 inserts the
scrambled reserved primitives 424 into a frame 406. In step
611, the transmitter device 500 inserts link maintenance bits
into the frame 406 alongside the scrambled reserved primi-
tives 424. As discussed above, in the exemplary embodi-
ment, three 40-bit reserved primitives 424 are scrambled and
inserted into a frame 406. The transmitter device 500 is
configured to include 8 bits of link maintenance from the
link maintenance module 432 to fill the rest of the 128-bit
frame 406. Link maintenance module 432 operates with DC
wander counter 434 to balance the number of ones and
zeroes transmitted over the link 130. The DC wander
counter 434 tracks the disparity between the number of
zeroes sent and the number of ones sent on the link 130. The
link maintenance module 432 uses the disparity count to
generate eight ones (i.e., FFh) or eight zeroes (i.e., 00h),
whichever tends to balance the disparity.

The method 600 then proceeds to step 606 and forward
error correction is performed in a manner similar to that
described above. In step 607, the transmitter device 500
transmits the data block 402 over the link 130. Data block
482 of FIG. 5 illustrates an exemplary transmitted data block
as a result of steps 609-611, 606, and 607. The method 600
may repeat as shown in FIG. 6. When the transmitter device
500 determines to transmit data 104 in step 608, the method
600 proceeds to steps 612, 613, 606, and 607 for steps
similar to that already described. Data block 484 of FIG. 5
illustrates an exemplary transmitted data block as a result of
these steps. Again, the method 600 may repeat as shown.

In the exemplary data structure 400 legacy control values
(e.g., reserved primitives 424) and control values not defined
in legacy protocols (e.g., initialization message 112) are
identified by the same type of header 404 (e.g., 01b) for
efficiency. In the illustrated example, unscrambled link
maintenance bits may be inserted into frames alongside
scrambled reserved primitives 424. It may therefore be
desirable for corresponding portions of frames with different
control values to have a minimal threshold hamming dis-
tance to reduce the probability that the two types of primi-
tives 420 are mistaken for one another at a receiver device.

To illustrate, data block 480 includes a header 404 set to
01b and a frame 406 that includes initialization message 112,
and data block 482 includes a header 404 set to 01b and a
frame 406 that includes eight link maintenance bits followed
by 120 bits of scrambled reserved primitives 424. The
example in FIG. 7 shows that the LFSR of the initialization
generator 110 produces a 128-bit initialization message 112
that includes a beginning portion (e.g., first eight bits) that
matches the seed value used (e.g., CCh). To distinguish
between the first portion of the 128-bit initialization value
112 and the link maintenance bits, a seed value is selected/

20

30

40

45

8

programmed in the memory cells to produce an initialization
message 112 whose beginning bits (e.g., CCh) are suffi-
ciently unique from the link maintenance bits. The example
link maintenance module 432 in FIG. 9 shows that the
selected seed value CCh has hamming distances from DC
balance symbols (FFh and 00h) of 4. Here, the transmitter
device 500 is highly unlikely to produce four bit errors in the
first eight bits of a transmitted frame 406, therefore the
exemplary selected seed value CCh may be said to have
sufficient hamming distance from the link maintenance bits.

Therefore, there are several possible considerations in
selection of a seed value for the initialization generator 110
to use for generation of the initialization message 112. A
seed value may be selected to produce an initialization
message 112 along with leading bits that appropriate identify
the initialization message 112 as a control value (e.g.,
primitive). A seed value may also be selected to produce an
initialization message 112 that includes a portion with
sufficient hamming distance from other types of data sent
(e.g., link maintenance bits). And, a seed value may be
selected to produce an initialization message 112 that inter-
acts with a forward error correction algorithm such that the
resulting forward error correction bits and initialization
message have a combined even or small disparity of ones
and zeroes.

The seed value may be selected/programmed in memory
cells as a matter of design choice for optimal balance of the
above-listed considerations. Experimental testing has shown
that seed values CCh, ASh, and 4Fh provide a good balance
of these characteristics for embodiments with 128-bit
frames. However, optimal seed value selection may vary
depending on the data structure and components of the
nodes. For example, some protocols/devices may use dif-
ferent link maintenance bits than those described herein,
may implement an alternative forward error correction algo-
rithm, or may not implement these functions at all. Further-
more, principles described herein are equally applicable to
alternative formats. For example, the devices described
herein may implement a 64/66b coding scheme. In that case,
it may be desirable for initialization generator 110 to include
an LFSR that generates a 64-bit initialization message 112
based on a 4-bit seed value input, such that the initialization
message 112 fits within a single frame of the supported data
architecture.

Embodiments described herein may take the form of
hardware, software, or some combination thereof. Embodi-
ments implemented in software, may include, but are not
limited to firmware, resident software, microcode, etc. FIG.
10 illustrates a computing system 1000 in which a computer
readable medium 1006 provides instructions for performing
any of the methods disclosed herein.

The medium 1006 can be any tangible electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system (or apparatus or device). Examples of a computer
readable medium 1006 include a semiconductor or solid
state memory, magnetic tape, a removable computer dis-
kette, a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD.

The computing system 1000, suitable for storing and/or
executing program code, may include one or more proces-
sors 1002 coupled directly or indirectly to memory 1008
through a system bus 1010. The memory 1008 can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which

US 9,432,187 B2

9

provide temporary storage of at least some program code in
order to reduce the number of times code is retrieved from
bulk storage during execution. Input/output or /O devices
1004 (including but not limited to keyboards, displays,
pointing devices, etc.) can be coupled to the system either
directly or through intervening /O controllers. Network
adapters may also be coupled to the system to enable the
computing system 1000 to become coupled to other data
processing systems, such as through host systems interfaces
1012, or remote printers or storage devices through inter-
vening private or public networks. Modems, cable modem
and Ethernet cards are just a few of the currently available
types of network adapters.

What is claimed is:

1. An apparatus for transmitting bits of data over a link,

comprising:

a scrambler configured to scramble data;

circuitry configured to insert the scrambled data into data
frames of data blocks, and to transmit the data blocks
over the link; and

an initialization module configured to generate an
unscrambled pseudo-random sequence;

the circuitry further configured to insert the unscrambled
pseudo-random sequence into a data frame instead of
the scrambled data at a predefined periodic interval, to
initialize the scrambler to a starting point based on the
insertion of the unscrambled pseudo-random sequence
into the data frame, and to transmit the data frame in a
data block over the link; and

the initialization module further configured to generate
the unscrambled pseudo-random sequence based on a
seed value selected so that a first portion of the
unscrambled pseudo-random sequence represents a
header of the data block that indicates that the data
frame includes a second portion of the unscrambled
pseudo-random sequence.

2. The apparatus of claim 1, further comprising:

a link maintenance module configured to insert mainte-
nance bits into frames to balance ones and zeroes
transmitted on the link; and

the seed value is selected to have a threshold hamming
distance from the maintenance bits.

3. The apparatus of claim 1, further comprising:

a forward error correction module configured to generate
correction bits for the data frame that includes the
unscrambled pseudo-random sequence, and to attach
the correction bits to the data block that includes the
data frame; and

wherein the seed value is selected to produce a minimal
threshold of disparity of total ones and zeroes between
the unscrambled pseudo-random sequence and the cor-
rection bits.

4. The apparatus of claim 3, wherein:

the forward error correction module generates correction
bits based on a Bose-Chaudhuri-Hocquenghem (BCH)
encoding algorithm.

5. The apparatus of claim 1, wherein:

the initialization module includes a linear feedback shift
register configured to generate the unscrambled
pseudo-random sequence based on the seed value.

6. The apparatus of claim 1, wherein:

the apparatus is compliant with Serial Attached Small
Computer System Interface architecture;

the circuitry is further configured to prepare first block
types that include a header that indicates inclusion of
control bits and a frame that includes scrambled primi-

10

15

20

25

30

35

40

45

50

55

60

65

10

tives of the Serial Attached Small Computer System
Interface architecture and unscrambled link mainte-
nance bits;

the circuitry is further configured to prepare second block
types that include a header that indicates inclusion of
control bits and a frame that includes the unscrambled
pseudo-random sequence; and

the seed value is selected to produce a threshold hamming
distance between the unscrambled pseudo-random
sequence and the unscrambled link maintenance bits to
distinguish the first block types from the second block
types.

7. A method comprising:

scrambling data with a scrambler;

inserting the scrambled data into data frames of data
blocks;

transmitting the data blocks over a link;

generating an unscrambled pseudo-random sequence;

inserting the unscrambled pseudo-random sequence into a
data frame instead of the scrambled data at a predefined
periodic interval;

initializing the scrambler to a starting point based on the
insertion of the unscrambled pseudo-random sequence
into the data frame; and

transmitting the data frame in a data block over the link;

wherein the generating of the unscrambled pseudo-ran-
dom sequence is based on a seed value selected so that
a first portion of the unscrambled pseudo-random
sequence represents a header of the data block that
indicates that the data frame includes a second portion
of the unscrambled pseudo-random sequence.

8. The method of claim 7, further comprising:

inserting maintenance bits into frames to balance ones and
zeroes transmitted on the link;

wherein the seed value is selected to have a threshold
hamming distance from the maintenance bits.

9. The method of claim 7, further comprising:

generating correction bits for the data frame that includes
the unscrambled pseudo-random sequence; and

attaching the correction bits to the data block that includes
the data frame;

wherein the seed value is selected to produce a minimal
threshold of disparity of total ones and zeroes between
the unscrambled pseudo-random sequence and the cor-
rection bits.

10. The method of claim 9, wherein:

the generation of correction bits is based on a Bose-
Chaudhuri-Hocquenghem (BCH) encoding algorithm.

11. The method of claim 7, wherein:

the generating of the unscrambled pseudo-random
sequence is performed with a linear feedback shift
register.

12. The method of claim 7, further comprising:

preparing first block types that include a header that
indicates inclusion of control bits and a frame that
includes scrambled primitives of the Serial Attached
Small Computer System Interface architecture and
unscrambled link maintenance bits; and

preparing second block types that include a header that
indicates inclusion of control bits and a frame that
includes the unscrambled pseudo-random sequence;
wherein

the seed value is selected to produce a threshold hamming
distance between the unscrambled pseudo-random
sequence and the unscrambled link maintenance bits to
distinguish the first block types from the second block

types.

US 9,432,187 B2

11
13. A system comprising:

a transmitter device configured to scramble data with a
scrambler, to insert the scrambled data into data frames
of data blocks, and to transmit the data blocks over a
link; and

a receiver device configured to receive the data blocks
over the link, to detect the scrambled data in the data
frames of the data blocks, and to descramble the
scrambled data with a descrambler;

the transmitter device further configured to transmit a data
block that includes an unscrambled pseudo-random
sequence in a data frame instead of the scrambled data
at a predefined periodic interval, and to initialize the
scrambler based on transmission of the unscrambled
pseudo-random sequence;

the receiver device further configured to receive the data
block over the link, to detect the unscrambled pseudo-
random sequence in the data frame of the data block,
and to initialize the descrambler based on the periodic
transmission of the unscrambled pseudo-random
sequence

the transmitter device further configured to generate the
unscrambled pseudo-random sequence based on a seed
value selected so that a first portion of the unscrambled
pseudo-random sequence represents a header of the
data block that indicates that the data frame includes a
second portion of the unscrambled pseudo-random
sequence.

10

15

20

25

12

14. The system of claim 13, wherein:

the transmitter device generates the unscrambled pseudo-
random sequence with a linear feedback shift register;
and

the receiver device detects the unscrambled pseudo-ran-
dom sequence with a linear feedback shift register.

15. The system of claim 13, wherein:

the data blocks include a 2-bit header, a 128-bit frame, and
a 16-bit forward error correction field.

16. The system of claim 15, wherein:

the unscrambled pseudo-random sequence is a 128-bit
value that is generated with a linear feedback shift
register based on a 7-bit seed value input.

17. The system of claim 16, wherein:

the last bit of the unscrambled pseudo-random sequence
is cleared to zero to maintain balance of ones and
zeroes.

18. The system of claim 13, wherein:

the scrambler generates a sequence and the initialization
of the scrambler restarts the sequence; and

the descrambler generates a corresponding sequence and
the initialization of the descrambler restarts the corre-
sponding sequence.

19. The system of claim 13, wherein:

the transmitter device and the receiver device are com-
pliant with the Serial Attached Small Computer System
Interface protocol.

20. The system of claim 13, wherein:

the transmitter device and the receiver device communi-
cate over a serial link.

#* #* #* #* #*

